Kochi J. Math.
11 (2016), 59-69

THE TR-GROUPS OF THE SPHERE SPECTRUM
AT THE PRIME TWO

Ryo KaTto

(Received November 7, 2014)
(Revised July 20, 2015)
(Accepted July 20, 2015)

Abstract: For the multiplicative group S', the circle, we have the topological
Hochschild S'-spectrum T'(S) of the sphere spectrum S. For the finite cyclic group
C, (= SY) of order r, the TR-groups of S at 2 are defined by the equivariant homotopy
groups TR}(S;2) = [S¥A(S"/Cyn),, T(S)]g1 for k>0 and n>1. By the “trace
method”, the groups are closely related with the algebraic K-groups of S. In [1],
Hesselholt determined the TR-groups for 0 < k < 5, in order to obtain the homotopy
groups of the topological Whitehead spectrum of the circle in dimensions less than 4.
In this paper, we extend his result for the TR-groups to k <9 by the mod 2 Adams
spectral sequence as well as the Atiyah-Hirzebruch spectral sequence.

1. Introduction

Throughout this paper, we fix a prime p =2 and denote by C, the finite
cyclic subgroup of the circle S! of order r. Let T(X) denote the topological
Hochschild homology spectrum of a ring spectrum X. Since 7'(X) is an S'!-
spectrum, we define the TR-spectrum TR"(X;2) of level n as the fixed point
spectrum T(X)“»' for n> 1. The spectrum TR(X;2) is given by

TR(X;2) = holim, TR"(X;2),

the homotopy limit of the system {R:TR"(X;2) — TR"'(X;2)}, of the re-
striction maps. The Frobenius maps F: TR"(X;2) — TR"'(X;2) induce a
map F: TR(X;2) — TR(X;2), and TC(X;2) is a spectrum fitting in the cofiber
sequence
TC(X;2) = TR(X;2) L TR(X;2) -1 ZTC(X;2).

Consider the algebraic K-theory spectrum K(X) of a ring spectrum X, and the
cyclotomic trace map tr¢: K(X) — TC(X;2). The “trace method” is to study
K(X) through the composite

tre

i K(X) 55 TC(X;2) 5 TR(X;2) — TR"(X;2).

We call the homotopy groups TR"(X;2) = n,(TR"(X;2)) the (2-primary) TR-
groups of X of level n.
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Let S denote the sphere spectrum localized at the prime two. In this
paper, we consider the TR-groups TR!(S;2). We have the Segal-tom Dieck
splitting TR (S;2) = nS((BCy-1),) ® TR?71(S;2) (1, p. 137, p. 148, p. 155)),
where BC,,1 denotes the classifying space of Cy.i. By definition, TR!(S;2) =
m,.(T(S)), which is isomorphic to 7.(S) ([1, p. 147]). These show an iso-
morphism

(1.1) TRI(S;2) = 7,(8) © @), 1o 7S (BC) ).
Hesselholt studied the Atiyah-Hirzebruch spectral sequence
(12)  E(n) = H(Cy,m(8S)) = n¥((BCan),) = m.(S) @ 15 (BCan),

which is called the skeleton spectral sequence in [1, p. 148], to show the
following theorem.

Theorem 1.3 (Hesselholt [1, Theorem 11]). The TR-groups TR}(S;2) for
k <5 are given by

TR}(S;2) ~ Zg)",

TR{(S;2) 2 /2" ® D), .., Z/2",

TR}(S;2) = Z/2°" ® D), .., L/2,

TRY(S;2) = Z/8%" @ @D, Z/2™ W @ D, ., /2,
TR;(S;2) = P, _,., 2/2™" 3,

TR5 S 2) ®2<s<n Z/ZS ® ®3<s<n

Liulevicius determined the stable homotopy groups n,f(BCz) for k<9
([3, Theorem IL.6]). We consider 77 (BCy) for n > 1 and k <9 in this paper.
In section 2, we determine the stable homotopy group ng(BCy) by the Atiyah-
Hirzebruch spectral sequence, and in section 3, we determine the stable
homotopy groups n5(BCy.) in dimensions 7, 8 and 9 by the mod 2 Adams
spectral sequence as well as the results in section 2. The following theorem
summarizes Corollary 2.10 and Propositions 3.12, 3.14 and 3.16.

THEOREM 1.4. The TR-groups TR}(S;2) for 6 <k <9 are given by
TR{(S;2) ~ 72" ® @ISKH 7/2,
TR;(S,2) = Z/16®” ® @1ss<n Z/2 @ @1§s<n Z/2maX{4,S+2} @ @2§s<n Z/z’
TR(S;2) = Z/2%" @ @) 2,0, 2/2™" © D o, /2%,

TRS(Sv 2) = Z/2®3n @ ®l§s<n Z/2®3 @ @] <s<n Z/zmin{4,s} @ @2$s<n Z/2S71'
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2. The Atiyah-Hirzebruch spectral sequences

In this section, EJ, (n) denotes an E’-term of the Atiyah-Hirzebruch
spectral sequence (1.2), and E*(n) stands for the spectral sequence. Since
the Cye-action on the homotopy groups z,(S) is trivial ([1, p. 145]), the
standard resolution gives rise to isomorphisms

,(S) s=0,
(2.1) E? (n) = Hy(Cyn,m,(S)) =< n,(S)/(2") s:0dd >0,
n(S)2"] s even >0,

of groups, where 7,(S)[2"] denotes the kernel of x,(S) % 7 (S).

THEOREM 2.2 (¢f. Toda [5, p. 189-190)). The homotopy groups m(S) for
k < 10 are given by

k ol 1| 2|3 |4|5|6] 7 8 9 10
w(S) || Zoy | Z/2 | Z/2 | 2/8| 0|0 | Z/2| 2/16 | Z/29% | 2/29° | Z/2

2 2

v v o | no,e |ne u v | nu

gen. 1 n n

The generators salisfy the relations n° = 4v, n’c = ne+v* and vo = 0.

We notice that the spectral sequence (1.2) splits into the direct sum of two
spectral sequences

(1, p. 148]). We study the latter spectral sequence.

First we consider the case for n=1. By (2.1) and Theorem 2.2, the
E*-terms E} (1) for s>1 and s+ ¢ <10 are given by



62 Ryo Kato

§
10 0
9 Z)2  Z)2
8 0 Z/2 Z)2
t /2 1)2 1)2 1)2
6 0 Z/2 Z/2 4Z/8 0
5 Z/2 Z/2 Z/2 Z/2 0 0
4 0 Z/2 Z/2 4Z/8 0 0 Z)2
3 Z/2 22 Z/)2 Z)2 0 0 Z/2 Z)2
2 0 Z/2 Z)2 0 0 Z/2 8Z/16 Z/29?
11Z/2 2/2 22 Z)2 0 0 Z/2 Z/2 729 7,293
1 2 3 4 5 6 7 8 9 10 s+4¢

Hereafter 29Z/2” denotes the subgroup of Z/2" generated by 2¢ which is
isomorphic to Z/2°~7 if a < b, and zero otherwise. For example, in the
above chart, the boxed 4Z/8 at (s,f) =(2,3) is the subgroup of Z/8 v
generated by 4v.

We deduce

2 o2 xy 4<5s=0,1mod (4),
ey @SB ={" e
from [1, p. 148]. This implies that the E3-terms have a periodicity:
(2.4) The E*-term E; (n) is isomorphic to E}, (n) if s> 2.

We obtain the E>-terms E} (1) for s> 1 and s+t <9 as follows by (2.3)
and (2.4).

A
9 0
8 0 0
7 Z/2 0 0
6 0 Z/2 0 0
5 0 0 Z/2 Z/2 0
4 0 0 0 4Z/8 0 0
3 Z/2 0 0 Z/2 0 0 Z/2
2 0 Z/2 0 0 0 0 Z/2 8Z/16
1(z/2 22 z/2 Z/2 0 0 Z/2 Z/2 729
1 2 3 4 5 6 () 8 9 s+t
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THEOREM 2.5 (Liulevicius [3, Theorem 11.6]). The stable homotopy groups
of BC, = RP®, the infinite real projective space, in dimensions less than 10 are
given by

k 1|23 4|56 7 8 9
aSRP?)|[Z/2]2/2|Z2/8|Z/2|0|2/2|2/16D2Z/2|Z/293 | 2204

COROLLARY 2.6. The spectral sequence E*(1) collapses at E* for s+t < 9.

We turn to the case for n > 2. By (2.3) and (2.4), we have the following
chart of E*-terms of E*(n) for s > 1 and s+ ¢ < 10:

S
10 0
9 222" 0
8 0 0 0
7 Z/2" 0 0 Z/4
6 0 0 K, 0
5 222" 0 Z, Gy, 0 0
4 0 0 0 Kin O 0
3 Z/2" 0 0 |zl o o zZi2 G
2 0 Z/2 0 Ky, 0 0 Z/2 K1, Kgn
1|z/2" 2/2 2/2 C5, O 0 Z/2 G, [2/297] 2/293
1 2 3 4 5 6 7 8 9 10 s+t

Here, K,,=mn(S)[2"], Kin=Kin/(n), Cin=m(S)/2" and Z, = ker(Cy, -
ng,,), whose structures are:

K= 2max{37n,0}Z/8’ Ky, 2max{4—n,0}Z/16’ 123 = 2max{3*n,0}Z/4,
IZg,,, ~7Z/2 except for 12372 ~ 12813 = Z/2®2, Cy = Z/Zmi“{”'S},
Crp = 22704 and Z,=0 except for Z, x> Z/2.
Lemma 2.7 ([1, p. 145, Lemma 6, p. 148]). The Verschiebung map
V:nS((BCynt),) — nS((BCan),) induces a map V :E*(n—1)— E*(n) of
spectral sequences. Let {x}, denote an element of Ef,(n) represented by x €

m(S).  If s is even, then V({x},_,) = {x}, for the map V : E} (n— 1) — EZ (n)
of the E,-terms.
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Since the differentials E? (1) d—3>E333(1) and Ej (1) L E} (1) are trivial
! Bz ' Bz
by Corollary 2.6, the differentials £¢ | (n) 4 E33(n) and E} 4(n) 4 E} ¢(n) for
n > 2 are trivial by Lemma 2.7.
Recall [1, Lemma 8] that

(28) (B%,(m) S B

§—

x2v 4<s=6,7,12,13 mod (16),

xv 4<s5=0,1,2,3,8,9,10,11 mod (16),
4,:+3(”)) =
0 otherwise,

for n>1. We then obtain the following chart of the E°-terms for n > 2,
except for the underlined group E3 ;(n).

S

10 0
9 8Z./2"| 0
8 0 0 0
7 22/2" 0 0 0
6 0 Z/2 0 0
5 222" 0 Z, Z)2 0 0
4 0 0 0 Kip O 0 ?
3 Z/2" 0 0 Z/2 0 0 72 7
2 0 Z/2 0 K, O 0 K1, 7
1|Z/)2" 22 Z/2 G, O 0 Z/2 |G| 7297 2

1 2 3 4 5 6 7 8 9 10 s+¢

By (2.1) and Theorem 2.2, we see that Ef, o(n) = Z/2" -1, and that Ef;(n) is
a quotient of E7373(n) =7Z/4-v. Thus, we deduce from (2.8) that the group
E3 5(n) is zero.

Lemma 2.9. On E (n) for n>2 and r>5, the only possibly nonzero

5 7 8
differentials are EJ 4(n) 4 E} 5(n), Ego(n) 4 E] ¢(n) and E§ (n) 4 E} 5(n) for
s+ <10

COROLLARY 2.10. For n > 2, the stable homotopy groups ns(BCy) in
dimensions from 6 to 9 satisfy the following relations:

ng(BCZM) ; Z/2,

|77 (BC2)| = 2",
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Inég(BCZ”N < 2min{n+2,6}’

|7‘L’§S(BC ”)| < 2miu{2n+2,n+6}.

3. The mod 2 Adams spectral sequence

In this section, we consider the mod 2 Adams spectral sequence
EY'(X) = Exty/(H*(X),2/2) = n? (X)

for a space X. Here H *(X) denotes a reduced cohomology of X with coeffi-
cients Z/2, and «f denotes the Steenrod algebra. We assume that »n > 2, and
determine the stable homotopy groups 73(BC) in dimensions less than 10 by
the mod 2 Adams spectral sequence for BCs..

PROPOSITION 3.1. The Ej-term Ey*(BCy) is isomorphic to xEy*(S%) @
Ey*(CP®) @ xEy"(CP®) as a graded Ey*(S®)-module for a generator x e
E21 9(BCy1). Here SO and CP® denote the O-dimensional sphere and the infinite
complex projective space, respectively.

Proor. We claim that there exists a generator x € H!(BC,:) such that
(3.2) H*(BCy) ~7.)2-x@® H*(CP®) ® xH*(CP®)

as a graded .«/-algebra. Indeed, the unreduced cohomology H*(BCyi,Z/2) is
isomorphic to the group cohomology H*(Cy1,Z/2) =~ E(x) ® P(y) with |x| =1
and |y| =2. Here E(—) and P(—) denote the exterior and the polynomial
algebras, respectively. Furthermore, we see that the action of </ on the
generators x and y is trivial except for Sg?(y) = y> by the fundamental
properties of the Steenrod squares, other than Sg!(y) =0. Note that Sq' fits
in the exact sequence

1
HY(BCy, 2)2) 25 HY(BCy,Z/2) —> H*(BCyi, Z/4)
1
— HY(BCyn,Z)2) 25 H3(BCyn, Z)2)

associated to the short exact sequence 0 — Z/2 — Z/4 — Z/2 — 0. In the
exact sequence, H?(BCy:,Z/2") = Z/2" by the standard resolution. The first
Sq! is zero, and so is the second Sq' as desired. We note that H*(S°) =~ Z/2
and H*(CP®) = P(y) as graded .«/-algebras for the augmented ideal P(y) of
P(y). Thus, the claim (3.2) is verified and hence the proposition follows.

a
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The E-terms Ey'(S°) are well known as follows ({4, Theorem 3.2.11]):

N

S| 43 Ph;
4| g h3hs Ico
3 hg h%Zhghz hghz (4] thh%hg,
2| H2 RE | hohy h2 | hohs | hihs
1| ho | I hy h3
0ff 1

0|12 3 415]6 7 8 9

t—s

The generators satisfy the relations:

(3.3) hhi1 =0 for i=0, h =hlh,  hoh?=0, k3 =hih,
hohs = 0, hoco = 0, hWco=0 and  hoPh; = 0.

We see the following fact immediately.
(3.4) The mod 2 Adams spectral sequence for S° collapses at E, for t — s < 10.

The Ej-terms Ey‘(CP®) are determined in [3, Prop. I1.3] as follows:

s
5 hies hies hies hies heno
4 hies hies hies hoes | hihses | hiero
3 hg e h§e4 hge6 eg h§h3ez hoero
2 hies hoes | hohaes | hdes hes | hohses | eno
1 hoer ey hyes | hoes | hes hiey
0 € €6

0|1 2 (3] 4 5 6 i/ 8 9 10
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REMARK 3.5. In (3], the generators Ay, ; (i > 0), ez, es, e,e3 and ejo here
are denoted by go,hi—1,€0,2,€1,5,€0,6,€3,11 and ey 12, respectively.

Therefore, we obtain the following chart of E;*(BC,») by Proposition 3.1.

6 xhg /’1862 xhgez hge4 xh8€4 hgeé xh8€6 /’1388 xhgeg héem

xPh
S\ |xkg |hiex| xhier | hies | xhiea | hies |xhies| hles | xhies h3e1
0¢€10
x/’l1C0
hihs | xhope
4| |xhg|hdes|xhier| hiea | xh3es | hies |xhges A ! 0°8 xhihse;
h()eg h0h362 hz
0€10
XCp xh?’
h2h h2h )
3| |xhd|hder| xhier x20 2| xhZes | Mles |xhdes| ™| xes |xhhses
/’1064 e 2
hyhsez| hoero
xhih
2112 xh12 xh0h2 xh0€4 xhoh2€2 xhg Xho/’l3 123 xh0h3e2
2 xhy |hgez| . 5 5 xhies
xhoez /’loe4 h0h282 hoeG xh086 /’1166 elo
/’loh3€2
h h h h h
1 xho i xhoez . . sl nandd ke h3€2 X/’l3€2
/’l0€2 €4 hzez h0€6 h166 xh166
0 x | e | xex e xeg
0] 1 2 3 4 5 6 7 8 9 10
[

Recall a well known fact (¢f [4, Lemma 3.1.3]):

(3.6) If aen3(BCy) is detected by an element a in Ey*(BCy), then 2u is
detected by ahy.

Since BC,» is a Hopf space (¢f. [2]), the following holds (¢f [4, Theorem
2.3.3)).

(3.7) The differentials of the mod 2 Adams spectral sequence for BCy. are
derivations.

By (1.1) and Theorem 2.2, the TR-groups in Theorem 1.3 give rise to the
stable homotopy groups n;(BCy») for k <5 as follows:
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(3.8) 5
g (BCy) = Z/2™n 3
73 (BCy) = 2,/29min{ln=2} gy 7, /21

We obtain the following lemma from (3.8).

LemMA 3.9. In the mod 2 Adams spectral sequence for BCy., the elements
x, xe; and xes are permanent cycles,

hohyey + xhges n= 2,

dy(er) = X/’l(’)l, dn(e4) = xhg+162 and d2(36) - { hohyes n>2.

Furthermore, dy(hye;) = xhghz if n =2, and e, is a permanent cycle otherwise.

Lemma 3.10. The elements hjeq and xhgeg of EZI’S(BCT.) are permanent
cycles.

ProoF. We note that 7 (BC,.) = Z/2 by Corollary 2.10. Since xhe; is
a permanent cycle by Lemma 3.9, it detects a generator of ng(BC,.), and so
hoes supports a nonzero differential. We deduce d,(hoes) = xhjes from the
structure of 7d (BCy+) in (3.8). Therefore hjes for i > 1 cannot be a target of
any differential. i

LEMMA 3.11.  dy(es) = xhles.

Proor. By (3.4), (3.7), Lemmas 3.9 and 3.10, the elements xhoes, #ies and
xh3 (resp. xhies, xhy and hies) detect generators of 5 (BCy) (resp. ng (BCan)).
Since |7 (BCyn)| =2"t* by Corollary 2.10, and the elements hjes and xh3
generate the Z/2-summands, the element detected by xh(’)’+3e6 is zero in the
homotopy. O

PROPOSITION 3.12. 7 (BCy) = Z/292 @ Z,/2"2.  The generators of sum-
mands are detected by xh%, hies and xhgeg, respectively.

LemMma 3.13.  The element hze; € EZI’IO(BCZI.) is a permanent cycle if n > 3,
and d,(hye;) = xh{hs if n=2,3. The element xes is a permanent cycle.

PROOF.  Since d,(e;) = xhj by Lemma 3.9, we have d,(h3e;) = xhllhs by
(3.7), which is not zero if n=2,3, and zero if n>3. By (3.7) and Lemma
3.11, hles supports a nontrivial differential, and so it cannot be a target of an
Adams differential. Therefore d,(h3e;) =0 for r > n in the case for n > 3.
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Since d,(xes) =0 by Lemma 3.11, we see that d,(xeg) =0 for r>n
similarly. Ll

This together with Lemma 3.10 implies the following result.

PROPOSITION 3.14. 7§(BCyn) = Z/292 @ Z/2™in4). The generators of
summands are detected by xhjeg, hfe(, and xhs, respectively.

LemMMA 3.15. | (BCy)| = 2min{Zn+2,nt6},

PROOF. Proposition 3.14 shows that |zd(BCy)| = 22 "{"+2.6} " which im-
plies that the undetermined differentials in Lemma 2.9 turn out to be trivial.
We now see the lemma by the same argument as the proof of Corollary 2.10.

O

ProrosiTiON 3.16. :r(f(BCz») = Z/2®3 @ Z/Zmi“{”"” @®Z/2"'.  The gen-
erators of summands are detected by xco, xhies, xhihs, hy' ai4=n, 0}
respectively.

hiey and xeg,

Proor. Since d(xhse;) =0 by Lemma 3.13, we see that xco and xhihs
generate Z/2-summands by (3.4) and (3.7). The element xhjes detects a
generator of the other Z/2 summand by Lemma 3.10. Lemma 3.13 shows

that A% jse, generates the summand Z/2™{"%. Lemmas 3.13 and
3.15 imply that xeg generates the summand Z/2". O

REMARK 3.17. This also implies a differential d,(ejo) = xh(’)"leg for n > 2,
and dy(e10) = xhpes mod (h3hse;) for n=2.
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