THE TR-GROUPS OF THE SPHERE SPECTRUM AT THE PRIME TWO Ryo Kato (Received November 7, 2014) (Revised July 20, 2015) (Accepted July 20, 2015) **Abstract:** For the multiplicative group S^1 , the circle, we have the topological Hochschild S^1 -spectrum T(S) of the sphere spectrum S. For the finite cyclic group C_r ($\subset S^1$) of order r, the TR-groups of S at 2 are defined by the equivariant homotopy groups $TR_k^n(S;2) = [S^k \wedge (S^1/C_{2^{n-1}})_+, T(S)]_{S^1}$ for $k \ge 0$ and $n \ge 1$. By the "trace method", the groups are closely related with the algebraic K-groups of S. In [1], Hesselholt determined the TR-groups for $0 \le k \le 5$, in order to obtain the homotopy groups of the topological Whitehead spectrum of the circle in dimensions less than 4. In this paper, we extend his result for the TR-groups to $k \le 9$ by the mod 2 Adams spectral sequence as well as the Atiyah-Hirzebruch spectral sequence. #### 1. Introduction Throughout this paper, we fix a prime p=2 and denote by C_r the finite cyclic subgroup of the circle S^1 of order r. Let T(X) denote the topological Hochschild homology spectrum of a ring spectrum X. Since T(X) is an S^1 -spectrum, we define the TR-spectrum $TR^n(X;2)$ of level n as the fixed point spectrum $T(X)^{C_{2^{n-1}}}$ for $n \ge 1$. The spectrum TR(X;2) is given by $$TR(X; 2) = \text{holim}_n TR^n(X; 2),$$ the homotopy limit of the system $\{R: TR^n(X;2) \to TR^{n-1}(X;2)\}_n$ of the restriction maps. The Frobenius maps $F: TR^n(X;2) \to TR^{n-1}(X;2)$ induce a map $F: TR(X;2) \to TR(X;2)$, and TC(X;2) is a spectrum fitting in the cofiber sequence $$TC(X;2) \xrightarrow{i} TR(X;2) \xrightarrow{id-F} TR(X;2) \xrightarrow{\partial} \Sigma TC(X;2).$$ Consider the algebraic K-theory spectrum K(X) of a ring spectrum X, and the cyclotomic trace map $trc: K(X) \to TC(X; 2)$. The "trace method" is to study K(X) through the composite $$tr_n: K(X) \stackrel{trc}{\rightarrow} TC(X;2) \stackrel{i}{\rightarrow} TR(X;2) \rightarrow TR^n(X;2).$$ We call the homotopy groups $TR_*^n(X;2) = \pi_*(TR^n(X;2))$ the (2-primary) TR-groups of X of level n. Let **S** denote the sphere spectrum localized at the prime two. In this paper, we consider the TR-groups $TR_*^n(\mathbf{S};2)$. We have the Segal-tom Dieck splitting $TR_*^n(\mathbf{S};2) \cong \pi_*^S((BC_{2^{n-1}})_+) \oplus TR_*^{n-1}(\mathbf{S};2)$ ([1, p. 137, p. 148, p. 155]), where $BC_{2^{n-1}}$ denotes the classifying space of $C_{2^{n-1}}$. By definition, $TR_*^1(\mathbf{S};2) = \pi_*(T(\mathbf{S}))$, which is isomorphic to $\pi_*(\mathbf{S})$ ([1, p. 147]). These show an isomorphism $$(1.1) TR_*^n(\mathbf{S}; 2) \cong \pi_*(\mathbf{S}) \oplus \bigoplus_{1 \le k \le n} \pi_*^S((BC_{2^k})_+).$$ Hesselholt studied the Atiyah-Hirzebruch spectral sequence $$(1.2) E_{s,t}^2(n) = H_s(C_{2^n}, \pi_t(\mathbf{S})) \Rightarrow \pi_*^S((BC_{2^n})_+) \cong \pi_*(\mathbf{S}) \oplus \pi_*^S(BC_{2^n}),$$ which is called the skeleton spectral sequence in [1, p. 148], to show the following theorem. Theorem 1.3 (Hesselholt [1, Theorem 11]). The TR-groups $TR_k^n(\mathbf{S};2)$ for $k \leq 5$ are given by $$TR_0^n(\mathbf{S}; 2) \cong \mathbf{Z}_{(2)}^{\oplus n},$$ $$TR_1^n(\mathbf{S}; 2) \cong \mathbf{Z}/2^{\oplus n} \oplus \bigoplus_{1 \leq s < n} \mathbf{Z}/2^s,$$ $$TR_2^n(\mathbf{S}; 2) \cong \mathbf{Z}/2^{\oplus n} \oplus \bigoplus_{1 \leq s < n} \mathbf{Z}/2,$$ $$TR_3^n(\mathbf{S}; 2) \cong \mathbf{Z}/8^{\oplus n} \oplus \bigoplus_{1 \leq s < n} \mathbf{Z}/2^{\max\{3, s+1\}} \oplus \bigoplus_{2 \leq s < n} \mathbf{Z}/2,$$ $$TR_4^n(\mathbf{S}; 2) \cong \bigoplus_{1 \leq s < n} \mathbf{Z}/2^{\min\{3, s\}},$$ $$TR_5^n(\mathbf{S}; 2) \cong \bigoplus_{2 \leq s < n} \mathbf{Z}/2^s \oplus \bigoplus_{3 \leq s \leq n} \mathbf{Z}/2.$$ Liulevicius determined the stable homotopy groups $\pi_k^S(BC_2)$ for $k \leq 9$ ([3, Theorem II.6]). We consider $\pi_k^S(BC_{2^n})$ for n > 1 and $k \leq 9$ in this paper. In section 2, we determine the stable homotopy group $\pi_6^S(BC_{2^n})$ by the Atiyah-Hirzebruch spectral sequence, and in section 3, we determine the stable homotopy groups $\pi_*^S(BC_{2^n})$ in dimensions 7, 8 and 9 by the mod 2 Adams spectral sequence as well as the results in section 2. The following theorem summarizes Corollary 2.10 and Propositions 3.12, 3.14 and 3.16. THEOREM 1.4. The TR-groups $TR_k^n(\mathbf{S}; 2)$ for $6 \le k \le 9$ are given by $TR_6^n(\mathbf{S}; 2) \cong \mathbf{Z}/2^{\oplus n} \oplus \bigoplus_{1 \le s < n} \mathbf{Z}/2$, $TR_7^n(\mathbf{S}; 2) \cong \mathbf{Z}/16^{\oplus n} \oplus \bigoplus_{1 \le s < n} \mathbf{Z}/2 \oplus \bigoplus_{1 \le s < n} \mathbf{Z}/2^{\max\{4, s+2\}} \oplus \bigoplus_{2 \le s < n} \mathbf{Z}/2$, $TR_8^n(\mathbf{S}; 2) \cong \mathbf{Z}/2^{\oplus 2n} \oplus \bigoplus_{1 \le s < n} \mathbf{Z}/2^{\min\{4, s\}} \oplus \bigoplus_{1 \le s < n} \mathbf{Z}/2^{\oplus 2}$, $$TR_9^n(\mathbf{S};2) \cong \mathbf{Z}/2^{\oplus 3n} \oplus \bigoplus_{1 \leq s \leq n} \mathbf{Z}/2^{\oplus 3} \oplus \bigoplus_{1 \leq s \leq n} \mathbf{Z}/2^{\min\{4,s\}} \oplus \bigoplus_{2 \leq s \leq n} \mathbf{Z}/2^{s-1}$$ Acknowledgements. It is a pleasure to thank Professor Lars Hesselholt for helpful comments to show the results in this paper. I would also like to thank Professors Hirofumi Nakai and Katsumi Shimomura, and the referee. Professor Nakai gave me a hint for calculating the Adams spectral sequence. Professor Shimomura helped me to show Proposition 3.16. Furthermore, Professor Shimomura and the referee gave me much advice for elaborating the paper. ### 2. The Atiyah-Hirzebruch spectral sequences In this section, $E_{s,t}^r(n)$ denotes an E^r -term of the Atiyah-Hirzebruch spectral sequence (1.2), and $E^*(n)$ stands for the spectral sequence. Since the C_{2^n} -action on the homotopy groups $\pi_*(\mathbf{S})$ is trivial ([1, p. 145]), the standard resolution gives rise to isomorphisms (2.1) $$E_{s,t}^{2}(n) = H_{s}(C_{2^{n}}, \pi_{t}(\mathbf{S})) \cong \begin{cases} \pi_{t}(\mathbf{S}) & s = 0, \\ \pi_{t}(\mathbf{S})/(2^{n}) & s : odd > 0, \\ \pi_{t}(\mathbf{S})[2^{n}] & s : even > 0, \end{cases}$$ of groups, where $\pi_t(\mathbf{S})[2^n]$ denotes the kernel of $\pi_t(\mathbf{S}) \stackrel{2^n}{\to} \pi_t(\mathbf{S})$. THEOREM 2.2 (cf. Toda [5, p. 189–190]). The homotopy groups $\pi_k(S)$ for $k \leq 10$ are given by | k | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |---------------------|--------------------|-------------|-------------|-------------|---|---|-------------|--------------|---------------------------|--------------------------------|----------------| | $\pi_k(\mathbf{S})$ | $\mathbf{Z}_{(2)}$ | Z /2 | Z /2 | Z /8 | 0 | 0 | Z /2 | Z /16 | Z /2 ^{⊕2} | Z /2 ^{⊕3} | $\mathbb{Z}/2$ | | gen. | ı | η | η^2 | ν | | | v^2 | σ | ησ, ε | $\eta \varepsilon, \mu, \nu^3$ | ημ | The generators satisfy the relations $\eta^3=4\nu$, $\eta^2\sigma=\eta\epsilon+\nu^3$ and $\nu\sigma=0$. We notice that the spectral sequence (1.2) splits into the direct sum of two spectral sequences $$E_{0,*}^2(n) \Rightarrow \pi_*(\mathbf{S})$$ and $\bigoplus_{s>1} E_{s,*}^2(n) \Rightarrow \pi_*^s(BC_{2^n})$ ([1, p. 148]). We study the latter spectral sequence. First we consider the case for n = 1. By (2.1) and Theorem 2.2, the E^2 -terms $E_{s,t}^2(1)$ for $s \ge 1$ and $s + t \le 10$ are given by | S | | | | | | | | | | | |----|----------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|---------------------------|---------------------------| | 10 | | | | | | | | | | 0 | | 9 | | | | | | | | | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | | 8 | | | | | | | | 0 | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | | 7 | | | | | | | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | | 6 | | | | | | 0 | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | 4 Z /8 | 0 | | 5 | | | | | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | 0 | 0 | | 4 | | | | 0 | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | 4Z /8 | 0 | 0 | $\mathbb{Z}/2$ | | 3 | | | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | 0 | 0 | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | | 2 | | 0 | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | $4\mathbb{Z}/8$ | 0 | 0 | $\mathbb{Z}/2$ | 8 Z /16 | $\mathbb{Z}/2^{\oplus 2}$ | | 1 | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | 0 | 0 | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | $\mathbb{Z}/2^{\oplus 2}$ | $\mathbb{Z}/2^{\oplus 3}$ | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 = s + t | Hereafter $2^a \mathbb{Z}/2^b$ denotes the subgroup of $\mathbb{Z}/2^b$ generated by 2^a , which is isomorphic to $\mathbb{Z}/2^{b-a}$ if a < b, and zero otherwise. For example, in the above chart, the boxed $4\mathbb{Z}/8$ at (s,t)=(2,3) is the subgroup of $\mathbb{Z}/8 \cdot \nu$ generated by 4ν . We deduce (2.3) $$(E_{s,t}^2(n) \stackrel{d^2}{\to} E_{s-2,t+1}^2(n)) = \begin{cases} \times \eta & 4 \le s \equiv 0, 1 \mod (4), \\ 0 & otherwise, \end{cases}$$ from [1, p. 148]. This implies that the E^3 -terms have a periodicity: (2.4) The $$E^3$$ -term $E^3_{s,t}(n)$ is isomorphic to $E^3_{s+4,t}(n)$ if $s \ge 2$. We obtain the E^3 -terms $E^3_{s,t}(1)$ for $s \ge 1$ and $s + t \le 9$ as follows by (2.3) and (2.4). | S | | | | | | | | | | | |---|----------------|----------------|----------------|----------------|---|----------------|----------------|----------------|---------------------------|-----| | 9 | | | | | | | | | 0 | | | 8 | | | | | | | | 0 | 0 | | | 7 | | | | | | | $\mathbb{Z}/2$ | 0 | 0 | | | 6 | | | | | | 0 | $\mathbb{Z}/2$ | 0 | 0 | | | 5 | | | | | 0 | 0 | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | 0 | | | 4 | | | | 0 | 0 | 0 | 4Z/8 | 0 | 0 | | | 3 | | | $\mathbb{Z}/2$ | 0 | 0 | $\mathbb{Z}/2$ | 0 | 0 | $\mathbb{Z}/2$ | | | 2 | | 0 | $\mathbf{Z}/2$ | 0 | 0 | 0 | 0 | $\mathbb{Z}/2$ | 8 Z /16 | | | 1 | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | 0 | 0 | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | $\mathbb{Z}/2^{\oplus 2}$ | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | s+t | THEOREM 2.5 (Liulevicius [3, Theorem II.6]). The stable homotopy groups of $BC_2 = \mathbb{R}P^{\infty}$, the infinite real projective space, in dimensions less than 10 are given by | | k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | |---|----------------------------------|----------------|----------------|-------------|-------------|---|----------------|-------------------------------------|---------------------------|---------------------------|--| | 7 | $\sigma_k^S(\mathbf{R}P^\infty)$ | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | Z /8 | Z /2 | 0 | $\mathbb{Z}/2$ | $\mathbf{Z}/16 \oplus \mathbf{Z}/2$ | Z /2 ^{⊕3} | Z /2 ^{⊕4} | | Corollary 2.6. The spectral sequence $E^*(1)$ collapses at E^3 for $s + t \le 9$. We turn to the case for $n \ge 2$. By (2.3) and (2.4), we have the following chart of E^3 -terms of $E^*(n)$ for $s \ge 1$ and $s + t \le 10$: | S | | | | | | | | | | | | |----|------------------|----------------|------------------|-----------|---------------------|----------------|------------------|----------------|---------------------------|---------------------------|-----| | 10 | | | | | | | | | | 0 | | | 9 | | | | | | | | | $2\mathbb{Z}/2^{n}$ | 0 | | | 8 | | | | | | | | 0 | 0 | 0 | | | 7 | | | | | | | $\mathbb{Z}/2^n$ | 0 | 0 | $\mathbb{Z}/4$ | | | 6 | | | | | | 0 | $\mathbb{Z}/2$ | 0 | $\bar{K}_{3,n}$ | 0 | | | 5 | | | | | $2\mathbb{Z}/2^{n}$ | 0 | Z_n | $C_{3,n}$ | 0 | 0 | | | 4 | | | | 0 | 0 | 0 | $K_{3,n}$ | 0 | 0 | $\mathbb{Z}/2$ | | | 3 | | | $\mathbb{Z}/2^n$ | 0 | 0 | $\mathbb{Z}/4$ | 0 | 0 | $\mathbb{Z}/2$ | $C_{7,n}$ | | | 2 | | 0 | $\mathbb{Z}/2$ | 0 | $ ilde{K}_{3,n}$ | 0 | 0 | $\mathbb{Z}/2$ | $K_{7,n}$ | $\widetilde{K}_{8,n}$ | | | 1 | $\mathbb{Z}/2^n$ | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | $C_{3,n}$ | 0 | 0 | $\mathbb{Z}/2$ | $C_{7,n}$ | $\mathbb{Z}/2^{\oplus 2}$ | $\mathbb{Z}/2^{\oplus 3}$ | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | s+t | Here, $K_{t,n} = \pi_t(\mathbf{S})[2^n]$, $\tilde{K}_{t,n} = K_{t,n}/(\eta)$, $C_{t,n} = \pi_t(\mathbf{S})/2^n$ and $Z_n = \ker(C_{2,n} \xrightarrow{\eta} C_{3,n})$, whose structures are: $$K_{3,n} \cong 2^{\max\{3-n,0\}} \mathbb{Z}/8, \qquad K_{7,n} \cong 2^{\max\{4-n,0\}} \mathbb{Z}/16, \qquad \tilde{K}_{3,n} \cong 2^{\max\{3-n,0\}} \mathbb{Z}/4,$$ $$\tilde{K}_{8,n} \cong \mathbb{Z}/2 \quad \text{except for } \tilde{K}_{8,2} \cong \tilde{K}_{8,3} \cong \mathbb{Z}/2^{\oplus 2}, \qquad C_{3,n} \cong \mathbb{Z}/2^{\min\{n,3\}},$$ $$C_{7,n} \cong \mathbb{Z}/2^{\min\{n,4\}} \quad \text{and} \quad Z_n = 0 \quad \text{except for } Z_2 \cong \mathbb{Z}/2.$$ LEMMA 2.7 ([1, p. 145, Lemma 6, p. 148]). The Verschiebung map $V: \pi_*^S((BC_{2^{n-1}})_+) \to \pi_*^S((BC_{2^n})_+)$ induces a map $V: E^*(n-1) \to E^*(n)$ of spectral sequences. Let $\{x\}_n$ denote an element of $E^2_{s,t}(n)$ represented by $x \in \pi_t(S)$. If s is even, then $V(\{x\}_{n-1}) = \{x\}_n$ for the map $V: E^2_{s,t}(n-1) \to E^2_{s,t}(n)$ of the E_2 -terms. Since the differentials $E_{6,1}^3(1) \xrightarrow{d^3} E_{3,3}^3(1)$ and $E_{4,6}^3(1) \xrightarrow{d^3} E_{1,8}^3(1)$ are trivial by Corollary 2.6, the differentials $E_{6,1}^3(n) \xrightarrow{d^3} E_{3,3}^3(n)$ and $E_{4,6}^3(n) \xrightarrow{d^3} E_{1,8}^3(n)$ for $n \ge 2$ are trivial by Lemma 2.7. Recall [1, Lemma 8] that $$(2.8) \quad (E_{s,t}^4(n) \xrightarrow{d^4} E_{s-4,t+3}^4(n)) = \begin{cases} \times \nu & 4 < s \equiv 0, 1, 2, 3, 8, 9, 10, 11 \bmod (16), \\ \times 2\nu & 4 < s \equiv 6, 7, 12, 13 \bmod (16), \\ 0 & otherwise, \end{cases}$$ for $n \ge 1$. We then obtain the following chart of the E^5 -terms for $n \ge 2$, except for the underlined group $E_{7,3}^5(n)$. | S | ĺ | | | | | | | | | | | |----|------------------|----------------|------------------|-----------|---------------------|----------------|---------------------|----------------|---------------------------|----|-------| | 10 | | | | | | | | | | 0 | | | 9 | | | | | | | | | $8{\bf Z}/2^n$ | 0 | | | 8 | | | | | | | | 0 | 0 | 0 | | | 7 | | | | | | | $2\mathbb{Z}/2^{n}$ | 0 | 0 | 0 | | | 6 | | | | | | 0 | $\mathbb{Z}/2$ | 0 | $[ilde{K}_{3,n}]$ | 0 | | | 5 | | | | | $2\mathbb{Z}/2^{n}$ | 0 | Z_n | $\mathbb{Z}/2$ | 0 | 0 | | | 4 | | | | 0 | 0 | 0 | $K_{3,n}$ | 0 | 0 | ? | | | 3 | | | $\mathbb{Z}/2^n$ | 0 | 0 | $\mathbb{Z}/2$ | 0 | 00 | $\mathbb{Z}/2$ | ? | | | 2 | | 0 | $\mathbb{Z}/2$ | 0 | $\tilde{K}_{3,n}$ | 0 | 0 | $\mathbb{Z}/2$ | $K_{7,n}$ | ? | | | 1 | $\mathbb{Z}/2^n$ | $\mathbb{Z}/2$ | $\mathbb{Z}/2$ | $C_{3,n}$ | 0 | 0 | $\mathbb{Z}/2$ | $C_{7,n}$ | $\mathbb{Z}/2^{\oplus 2}$ | ? | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | s + t | By (2.1) and Theorem 2.2, we see that $E_{11,0}^4(n) = \mathbb{Z}/2^n \cdot \iota$, and that $E_{7,3}^4(n)$ is a quotient of $E_{7,3}^3(n) = \mathbb{Z}/4 \cdot \nu$. Thus, we deduce from (2.8) that the group $E_{7,3}^5(n)$ is zero. Lemma 2.9. On $E_{s,t}^r(n)$ for $n \ge 2$ and $r \ge 5$, the only possibly nonzero differentials are $E_{6,3}^5(n) \stackrel{d^5}{\to} E_{1,7}^5(n)$, $E_{9,0}^7(n) \stackrel{d^7}{\to} E_{2,6}^7(n)$ and $E_{9,0}^8(n) \stackrel{d^8}{\to} E_{1,7}^8(n)$ for $s+t \le 10$. COROLLARY 2.10. For $n \ge 2$, the stable homotopy groups $\pi_*^S(BC_{2^n})$ in dimensions from 6 to 9 satisfy the following relations: $$\pi_6^S(BC_{2^n}) \cong \mathbb{Z}/2,$$ $|\pi_7^S(BC_{2^n})| = 2^{n+4},$ $$|\pi_8^S(BC_{2^n})| \le 2^{\min\{n+2,6\}},$$ $|\pi_9^S(BC_{2^n})| \le 2^{\min\{2n+2,n+6\}}.$ ## 3. The mod 2 Adams spectral sequence In this section, we consider the mod 2 Adams spectral sequence $$E_2^{s,t}(X) = \operatorname{Ext}_{\mathscr{A}}^{s,t}(\tilde{H}^*(X), \mathbb{Z}/2) \Rightarrow \pi_{t-s}^{S}(X)$$ for a space X. Here $\tilde{H}^*(X)$ denotes a reduced cohomology of X with coefficients $\mathbb{Z}/2$, and \mathscr{A} denotes the Steenrod algebra. We assume that $n \geq 2$, and determine the stable homotopy groups $\pi_*^S(BC_{2^n})$ in dimensions less than 10 by the mod 2 Adams spectral sequence for BC_{2^n} . PROPOSITION 3.1. The E_2 -term $E_2^{*,*}(BC_{2"})$ is isomorphic to $xE_2^{*,*}(S^0) \oplus E_2^{*,*}(\mathbb{C}P^\infty) \oplus xE_2^{*,*}(\mathbb{C}P^\infty)$ as a graded $E_2^{*,*}(S^0)$ -module for a generator $x \in E_2^{1,0}(BC_{2"})$. Here S^0 and $\mathbb{C}P^\infty$ denote the 0-dimensional sphere and the infinite complex projective space, respectively. PROOF. We claim that there exists a generator $x \in \tilde{H}^1(BC_{2^n})$ such that (3.2) $$\tilde{H}^*(BC_{2^n}) \cong \mathbb{Z}/2 \cdot x \oplus \tilde{H}^*(\mathbb{C}P^{\infty}) \oplus x\tilde{H}^*(\mathbb{C}P^{\infty})$$ as a graded \mathscr{A} -algebra. Indeed, the unreduced cohomology $H^*(BC_{2^n}, \mathbb{Z}/2)$ is isomorphic to the group cohomology $H^*(C_{2^n}, \mathbb{Z}/2) \cong E(x) \otimes P(y)$ with |x| = 1 and |y| = 2. Here E(-) and P(-) denote the exterior and the polynomial algebras, respectively. Furthermore, we see that the action of \mathscr{A} on the generators x and y is trivial except for $Sq^2(y) = y^2$ by the fundamental properties of the Steenrod squares, other than $Sq^1(y) = 0$. Note that Sq^1 fits in the exact sequence $$H^{1}(BC_{2^{n}}, \mathbb{Z}/2) \xrightarrow{Sq^{1}} H^{2}(BC_{2^{n}}, \mathbb{Z}/2) \longrightarrow H^{2}(BC_{2^{n}}, \mathbb{Z}/4)$$ $$\longrightarrow H^{2}(BC_{2^{n}}, \mathbb{Z}/2) \xrightarrow{Sq^{1}} H^{3}(BC_{2^{n}}, \mathbb{Z}/2)$$ associated to the short exact sequence $0 \to \mathbb{Z}/2 \to \mathbb{Z}/4 \to \mathbb{Z}/2 \to 0$. In the exact sequence, $H^2(BC_{2^n}, \mathbb{Z}/2^i) \cong \mathbb{Z}/2^i$ by the standard resolution. The first Sq^1 is zero, and so is the second Sq^1 as desired. We note that $\tilde{H}^*(S^0) \cong \mathbb{Z}/2$ and $\tilde{H}^*(\mathbb{C}P^{\infty}) \cong \bar{P}(y)$ as graded \mathscr{A} -algebras for the augmented ideal $\bar{P}(y)$ of P(y). Thus, the claim (3.2) is verified and hence the proposition follows. The E_2 -terms $E_2^{s,t}(S^0)$ are well known as follows ([4, Theorem 3.2.11]): | : | 1 | | | | | | | | | | |---|---------|-------|---------|---------------------|---|---|---------|----------------|----------|---------------------| | 5 | h_0^5 | | | | | | | | | Ph_1 | | 4 | h_0^4 | | | | | | | $h_0^3 h_3$ | | h_1c_0 | | 3 | h_0^3 | | | $h_1^3 = h_0^2 h_2$ | | | | $h_0^2 h_2$ | c_0 | $h_2^3 = h_1^2 h_3$ | | 2 | h_0^2 | | h_1^2 | h_0h_2 | | | h_2^2 | h_0h_3 | h_1h_3 | | | 1 | h_0 | h_1 | | h_2 | | | | h ₃ | | | | 0 | 1 | | | | | | | | | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | The generators satisfy the relations: (3.3) $$h_i h_{i+1} = 0$$ for $i \ge 0$, $h_1^3 = h_0^2 h_2$, $h_0 h_2^2 = 0$, $h_2^3 = h_1^2 h_3$, $h_0^4 h_3 = 0$, $h_0 c_0 = 0$, $h_1^2 c_0 = 0$ and $h_0 P h_1 = 0$. We see the following fact immediately. (3.4) The mod 2 Adams spectral sequence for S^0 collapses at E_2 for t-s<10. The E_2 -terms $E_2^{s,t}(\mathbb{C}P^{\infty})$ are determined in [3, Prop. II.3] as follows: | : | | | | | š | | : | | Į. | | į | |---|---|---|-------------|---|-------------|-------------|----------------|----------|-------------|-----------------|----------------| | 5 | | | $h_0^5 e_2$ | | $h_0^4 e_4$ | | $h_0^5 e_6$ | | $h_0^2 e_8$ | | $h_0^3 e_{10}$ | | 4 | | | $h_0^4 e_2$ | | $h_0^3 e_4$ | | $h_0^4 e_6$ | | h_0e_8 | $h_0^3 h_3 e_2$ | $h_0^2 e_{10}$ | | 3 | | | $h_0^3 e_2$ | | $h_0^2 e_4$ | | $h_0^3 e_6$ | | e_8 | $h_0^2h_3e_2$ | h_0e_{10} | | 2 | | | $h_0^2 e_2$ | | h_0e_4 | $h_0h_2e_2$ | $h_0^2 e_6$ | | $h_1^2 e_6$ | $h_0h_3e_2$ | e_{10} | | 1 | | | h_0e_2 | | e_4 | h_2e_2 | h_0e_6 | h_1e_6 | | h_3e_2 | | | 0 | | | e_2 | | | | e ₆ | | | | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | REMARK 3.5. In [3], the generators h_0, h_i $(i > 0), e_2, e_4, e_6, e_8$ and e_{10} here are denoted by $g_0, h_{i-1}, e_{0,2}, e_{1,5}, e_{0,6}, e_{3,11}$ and $e_{2,12}$, respectively. Therefore, we obtain the following chart of $E_2^{*,*}(BC_{2^n})$ by Proposition 3.1. | : | | X | * | : | : | : | : | : | : | : | : | |---|---|----------|-----------------|------------------------|-----------------------------------|--------------------------------------------------|-------------------------------------------------------|------------------------|----------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------| | 6 | | xh_0^6 | $h_0^6 e_2$ | $xh_0^6e_2$ | $h_0^5 e_4$ | $xh_0^5e_4$ | $h_0^6 e_6$ | $xh_0^6e_6$ | $h_0^3 e_8$ | $xh_0^3e_8$ | $h_0^4 e_{10}$ | | 5 | | xh_0^5 | $h_0^5 e_2$ | $xh_0^5e_2$ | $h_0^4 e_4$ | $xh_0^4e_4$ | $h_0^5 e_6$ | $xh_0^5e_6$ | $h_0^2 e_8$ | $xh_0^2e_8$ | $xPh_1 \\ h_0^3e_{10}$ | | 4 | | xh_0^4 | $h_0^4 e_2$ | $xh_0^4e_2$ | $h_0^3 e_4$ | $xh_0^3e_4$ | $h_0^4 e_6$ | $xh_0^4e_6$ | $ \begin{array}{c} xh_0^3h_3\\h_0e_8 \end{array} $ | xh_0e_8 $h_0^3h_3e_2$ | $ \begin{array}{c} xh_1c_0 \\ xh_0^3h_3e_2 \\ h_0^2e_{10} \end{array} $ | | 3 | | xh_0^3 | $h_0^3 e_2$ | $xh_0^3e_2$ | $xh_0^2h_2$ $h_0^2e_4$ | $xh_0^2e_4$ | $h_0^3 e_6$ | $xh_0^3e_6$ | $xh_0^2h_3$ e_8 | xc_0 xe_8 $h_0^2h_3e_2$ | $ \begin{array}{c} xh_2^3 \\ xh_0^2h_3e_2 \\ h_0e_{10} \end{array} $ | | 2 | | xh_0^2 | $h_0^2 e_2$ | $xh_1^2 \\ xh_0^2 e_2$ | xh_0h_2 h_0e_4 | xh_0e_4 $h_0h_2e_2$ | $ \begin{array}{c} xh_0h_2e_2\\h_0^2e_6 \end{array} $ | $xh_2^2 \\ xh_0^2 e_6$ | $\begin{vmatrix} xh_0h_3\\h_1^2e_6\end{vmatrix}$ | $ \begin{array}{c} xh_1h_3\\ xh_1^2e_6\\ h_0h_3e_2 \end{array} $ | $xh_0h_3e_2$ e_{10} | | 1 | | xh_0 | xh_1 h_0e_2 | xh_0e_2 | xh ₂
e ₄ | xe ₄
h ₂ e ₂ | $ \begin{array}{c} xh_2e_2\\h_0e_6 \end{array} $ | xh_0e_6 h_1e_6 | xh_3 xh_1e_6 | h_3e_2 | xh_3e_2 | | 0 | | х | e_2 | xe ₂ | | | e_6 | xe ₆ | | | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | t-s Recall a well known fact (cf. [4, Lemma 3.1.3]): (3.6) If $\alpha \in \pi_*^S(BC_{2^n})$ is detected by an element a in $E_2^{*,*}(BC_{2^n})$, then 2α is detected by ah_0 . Since BC_{2^n} is a Hopf space (cf. [2]), the following holds (cf. [4, Theorem 2.3.3]). (3.7) The differentials of the mod 2 Adams spectral sequence for BC_{2^n} are derivations. By (1.1) and Theorem 2.2, the TR-groups in Theorem 1.3 give rise to the stable homotopy groups $\pi_k^S(BC_{2^n})$ for $k \le 5$ as follows: 68 (3.8) $$\pi_1^S(BC_{2^n}) \cong \mathbb{Z}/2^n,$$ $$\pi_2^S(BC_{2^n}) \cong \mathbb{Z}/2,$$ $$\pi_3^S(BC_{2^n}) \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2^{n+1},$$ $$\pi_4^S(BC_{2^n}) \cong \mathbb{Z}/2^{\min\{3,n\}},$$ $$\pi_5^S(BC_{2^n}) \cong \mathbb{Z}/2^{\oplus \min\{1,n-2\}} \oplus \mathbb{Z}/2^n.$$ We obtain the following lemma from (3.8). LEMMA 3.9. In the mod 2 Adams spectral sequence for BC_{2^n} , the elements x, xe_2 and xe_4 are permanent cycles, $$d_n(e_2) = xh_0^n$$, $d_n(e_4) = xh_0^{n+1}e_2$ and $d_2(e_6) = \begin{cases} h_0h_2e_2 + xh_0e_4 & n = 2, \\ h_0h_2e_2 & n > 2. \end{cases}$ Furthermore, $d_2(h_2e_2) = xh_0^2h_2$ if n = 2, and h_2e_2 is a permanent cycle otherwise. LEMMA 3.10. The elements h_1e_6 and xh_0e_6 of $E_2^{1,8}(BC_{2^n})$ are permanent cycles. PROOF. We note that $\pi_6^S(BC_{2^n}) \cong \mathbb{Z}/2$ by Corollary 2.10. Since xh_2e_2 is a permanent cycle by Lemma 3.9, it detects a generator of $\pi_6^S(BC_{2^n})$, and so h_0e_6 supports a nonzero differential. We deduce $d_n(h_0e_6) = xh_0^ne_4$ from the structure of $\pi_5^S(BC_{2^n})$ in (3.8). Therefore $h_0^ie_6$ for $i \geq 1$ cannot be a target of any differential. LEMMA 3.11. $$d_n(e_8) = xh_0^{n+3}e_6$$. PROOF. By (3.4), (3.7), Lemmas 3.9 and 3.10, the elements xh_0e_6 , h_1e_6 and xh_2^2 (resp. xh_1e_6 , xh_3 and $h_1^2e_6$) detect generators of $\pi_7^S(BC_{2^n})$ (resp. $\pi_8^S(BC_{2^n})$). Since $|\pi_7^S(BC_{2^n})| = 2^{n+4}$ by Corollary 2.10, and the elements h_1e_6 and xh_2^2 generate the $\mathbb{Z}/2$ -summands, the element detected by $xh_0^{n+3}e_6$ is zero in the homotopy. PROPOSITION 3.12. $\pi_7^S(BC_{2^n}) \cong \mathbb{Z}/2^{\oplus 2} \oplus \mathbb{Z}/2^{n+2}$. The generators of summands are detected by xh_2^2 , h_1e_6 and xh_0e_6 , respectively. LEMMA 3.13. The element $h_3e_2 \in E_2^{1,10}(BC_{2^n})$ is a permanent cycle if n > 3, and $d_n(h_3e_2) = xh_0^nh_3$ if n = 2,3. The element xe_8 is a permanent cycle. PROOF. Since $d_n(e_2) = xh_0^n$ by Lemma 3.9, we have $d_n(h_3e_2) = xh_0^nh_3$ by (3.7), which is not zero if n = 2, 3, and zero if n > 3. By (3.7) and Lemma 3.11, $h_0^re_8$ supports a nontrivial differential, and so it cannot be a target of an Adams differential. Therefore $d_r(h_3e_2) = 0$ for r > n in the case for n > 3. Since $d_n(xe_8) = 0$ by Lemma 3.11, we see that $d_r(xe_8) = 0$ for r > n similarly. This together with Lemma 3.10 implies the following result. PROPOSITION 3.14. $\pi_8^S(BC_{2^n}) \cong \mathbb{Z}/2^{\oplus 2} \oplus \mathbb{Z}/2^{\min\{n,4\}}$. The generators of summands are detected by xh_1e_6 , $h_1^2e_6$ and xh_3 , respectively. Lemma 3.15. $|\pi_9^S(BC_{2^n})| = 2^{\min\{2n+2, n+6\}}$. PROOF. Proposition 3.14 shows that $|\pi_8^S(BC_{2^n})| = 2^{\min\{n+2,6\}}$, which implies that the undetermined differentials in Lemma 2.9 turn out to be trivial. We now see the lemma by the same argument as the proof of Corollary 2.10. PROPOSITION 3.16. $\pi_9^S(BC_{2^n}) \cong \mathbb{Z}/2^{\oplus 3} \oplus \mathbb{Z}/2^{\min\{n,4\}} \oplus \mathbb{Z}/2^{n-1}$. The generators of summands are detected by xc_0 , $xh_1^2e_6$, xh_1h_3 , $h_0^{\max\{4-n,0\}}h_3e_2$ and xe_8 , respectively. PROOF. Since $d_2(xh_3e_2)=0$ by Lemma 3.13, we see that xc_0 and xh_1h_3 generate $\mathbb{Z}/2$ -summands by (3.4) and (3.7). The element $xh_1^2e_6$ detects a generator of the other $\mathbb{Z}/2$ summand by Lemma 3.10. Lemma 3.13 shows that $h_0^{\max\{4-n,0\}}h_3e_2$ generates the summand $\mathbb{Z}/2^{\min\{n,4\}}$. Lemmas 3.13 and 3.15 imply that xe_8 generates the summand $\mathbb{Z}/2^{n-1}$. REMARK 3.17. This also implies a differential $d_n(e_{10}) = xh_0^{n-1}e_8$ for n > 2, and $d_2(e_{10}) \equiv xh_0e_8 \mod(h_0^3h_3e_2)$ for n = 2. #### References - [1] L. Hesselholt, On the Whitehead spectrum of the circle, Algebraic topology, Abel Symp. Vol. 4, 2009, pp. 131–184. - [2] K. Ishiguro, Classifying spaces and homotopy sets of axes of parings, Proc. Amer. Math. Soc. 124 (1996), 3897–3903. - [3] A. Liulevicius, A theorem in homological algebra and stable homotopy of projective spaces, Trans. Amer. Math. Soc. 109 (1963), 540-552. - [4] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, AMS Chelsea Publishing, Providence, 2004. - [5] H. Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N. J. 1962. Department of Mathematics Faculty of Science Kochi University Kochi, 780-8520, Japan E-mail: ryo_kato_1128@yahoo.co.jp